Python 與 R 效能大對決!實測比較 Python 和 R 處理數據時的記憶體使用&執行速度

  1. 前言
  2. 實測環境&版本
  3. 實測程式碼
    1. Python
    2. R
    3. 檢查 Test Data 是否相同
  4. 實測數據
  5. 實測結論
  6. 總結

前言

近期因為遇到在 GCP Compute Engine 跑 R 程式碼發生 OOM (Out of Memory)的記憶體問題,所以研究了很多關於 Python 和 R 之間的比較,看到不少文章都說 R 在效能、記憶體分配和垃圾處理(Garbage collect)上都是輸給 Python 的,也看到很多人不推薦使用 R 做大型數據處理。

秉持著研究精神,還是自己測一次最有感,所以這篇文章就是我自己實測的 Python VS. R 的記憶體 + 執行時間的大對決!

實測環境&版本

  • Macbook Pro
    • 晶片: Apple M3
    • 記憶體: 16 GB
    • MacOS: Sonoma 14.2
  • R
    • IDE: 採用最主流的 R Studio 來執行
    • Version:
      • R version: 4.3.3
      • pryr: 0.1.6
  • Python
    • IDE: 採用市占率最高的 VS Code 來執行
    • Version:
      • Python version 3.11.9
      • psutil: 6.0.0
      • numpy: 1.26.4

實測程式碼

這次直接由 ChatGPT-4o 幫我生成兩種不同程式語言的程式碼,我只有附上自己的註解,以及手動更改建立的數據大小而已(下面圖片中的程式碼範例皆為產出一個 70000 x 70000 的表)

閱讀更多»